6 research outputs found

    Search method for long-duration gravitational-wave transients from neutron stars

    Full text link
    We introduce a search method for a new class of gravitational-wave signals, namely long-duration O(hours - weeks) transients from spinning neutron stars. We discuss the astrophysical motivation from glitch relaxation models and we derive a rough estimate for the maximal expected signal strength based on the superfluid excess rotational energy. The transient signal model considered here extends the traditional class of infinite-duration continuous-wave signals by a finite start-time and duration. We derive a multi-detector Bayes factor for these signals in Gaussian noise using \F-statistic amplitude priors, which simplifies the detection statistic and allows for an efficient implementation. We consider both a fully coherent statistic, which is computationally limited to directed searches for known pulsars, and a cheaper semi-coherent variant, suitable for wide parameter-space searches for transients from unknown neutron stars. We have tested our method by Monte-Carlo simulation, and we find that it outperforms orthodox maximum-likelihood approaches both in sensitivity and in parameter-estimation quality.Comment: 20 pages, 9 figures; submitted to PR

    Parameter Estimation in Searches for the Stochastic Gravitational-Wave Background

    Full text link
    The stochastic gravitational-wave background (SGWB) is expected to arise from the superposition of many independent and unresolved gravitational-wave signals of either cosmological or astrophysical origin. The spectral content of the SGWB carries signatures of the physics that generated it. We present a Bayesian framework for estimating the parameters associated with different SGWB models using data from gravitational-wave detectors. We apply this technique to recent results from LIGO to produce the first simultaneous 95% confidence level limits on multiple parameters in generic power-law SGWB models and in SGWB models of compact binary coalescences. We also estimate the sensitivity of the upcoming second-generation detectors such as Advanced LIGO/Virgo to these models and demonstrate how SGWB measurements can be combined and compared with observations of individual compact binary coalescences in order to build confidence in the origin of an observed SGWB signal. In doing so, we demonstrate a novel means of differentiating between different sources of the SGWB.Comment: 6 pages, 5 figure

    The stochastic background from cosmic (super)strings: popcorn and (Gaussian) continuous regimes

    Full text link
    In the era of the next generation of gravitational wave experiments a stochastic background from cusps of cosmic (super)strings is expected to be probed and, if not detected, to be significantly constrained. A popcorn-like background can be, for part of the parameter space, as pronounced as the (Gaussian) continuous contribution from unresolved sources that overlap in frequency and time. We study both contributions from unresolved cosmic string cusps over a range of frequencies relevant to ground based interferometers, such as LIGO/Virgo second generation (AdLV) and Einstein Telescope (ET) third generation detectors, the space antenna LISA and Pulsar Timing Arrays (PTA). We compute the sensitivity (at 2σ2 \sigma level) in the parameter space for AdLV, ET, LISA and PTA. We conclude that the popcorn regime is complementary to the continuous background. Its detection could therefore enhance confidence in a stochastic background detection and possibly help determine fundamental string parameters such as the string tension and the reconnection probability.Comment: 21 pages, 11 figures ; revised version after correction of a typo in eq. 4.

    A Mock Data Challenge for the Einstein Gravitational-Wave Telescope

    Full text link
    Einstein Telescope (ET) is conceived to be a third generation gravitational-wave observatory. Its amplitude sensitivity would be a factor ten better than advanced LIGO and Virgo and it could also extend the low-frequency sensitivity down to 1--3 Hz, compared to the 10--20 Hz of advanced detectors. Such an observatory will have the potential to observe a variety of different GW sources, including compact binary systems at cosmological distances. ET's expected reach for binary neutron star (BNS) coalescences is out to redshift z2z\simeq 2 and the rate of detectable BNS coalescences could be as high as one every few tens or hundreds of seconds, each lasting up to several days. %in the sensitive frequency band of ET. With such a signal-rich environment, a key question in data analysis is whether overlapping signals can be discriminated. In this paper we simulate the GW signals from a cosmological population of BNS and ask the following questions: Does this population create a confusion background that limits ET's ability to detect foreground sources? How efficient are current algorithms in discriminating overlapping BNS signals? Is it possible to discern the presence of a population of signals in the data by cross-correlating data from different detectors in the ET observatory? We find that algorithms currently used to analyze LIGO and Virgo data are already powerful enough to detect the sources expected in ET, but new algorithms are required to fully exploit ET data.Comment: accepted for publication in Physical Review D -- 18 pages, 8 figure

    Long gravitational-wave transients and associated detection strategies for a network of terrestrial interferometers

    Get PDF
    Searches for gravitational waves (GWs) traditionally focus on persistent sources (e.g., pulsars or the stochastic background) or on transients sources (e.g., compact binary inspirals or core-collapse supernovae), which last for time scales of milliseconds to seconds. We explore the possibility of long GW transients with unknown waveforms lasting from many seconds to weeks. We propose a novel analysis technique to bridge the gap between short O(s) “burst” analyses and persistent stochastic analyses. Our technique utilizes frequency-time maps of GW strain cross power between two spatially separated terrestrial GW detectors. The application of our cross power statistic to searches for GW transients is framed as a pattern recognition problem, and we discuss several pattern-recognition techniques. We demonstrate these techniques by recovering simulated GW signals in simulated detector noise. We also recover environmental noise artifacts, thereby demonstrating a novel technique for the identification of such artifacts in GW interferometers. We compare the efficiency of this framework to other techniques such as matched filtering
    corecore